
 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

ASP.NET: Uploading an Image and creating a thumbnail
During the course of this tutorial you will learn how to provide users with the facility to upload files to a remote
server using an HTML form; specifically this tutorial will focus on uploading image files to an Images directory
and saving a proportionally-sized thumbnail of the uploaded images in a Thumbs directory, the code
presented here is able to identify if an image is landscape or portrait and adjust the dimensions of the
generated thumbnail accordingly. This is a very common scenario on a typical e-commerce site where a
product list page would show the thumbnail images and the detailed product info page would show the
larger image. This tutorial demonstrates how to code the ASP.NET for uploading gif and jpg files.

In a production environment, where you want support for GIF, JPG, PGM, PNG, TGA, TIFF, PCX, or BMP files, or
allow users to select compression settings, or enable user-friendly error messages, DMXzone have an
extension called Smart Image Processor.NET which is highly recommended.

The HTML portion of the page
The HTML portion of the example page is pretty simple, it consists of an HTML form with a runat="server"
attribute defined and its enctype attribute set to multipart/form-data, which tells the browser that its is to post
the form data as binary data rather that plain text. Within the form is an input field with a type of file, which
renders a text field equipped with a browse button that allows the end user to browse and select a file on
their own computer that should be uploaded. This file field also has its runat attribute set to server to make it
visible to our server side code. Finally, the form also contains an asp:Button control that renders the submit
button for the form. All this is shown in the following code block.

<HTML>
 <HEAD>
 <title>Image Upload and thumbnail maker</title>
 </HEAD>
 <body>
 <form method="post" enctype="multipart/form-data" name="form1" id="form1"
runat="server">
 <p>
 <input name="File1" type="file" id="File1" runat="server">
 </p>
 <p>
 <asp:Button ID="Button1" Text="Upload" runat="server" />
 </p>
 </form>
 </body>
</HTML>

The Server Side Code
Here's the server side code responsible for saving the uploaded image and generating the thumbnail image:

C# (UploadCsharp.aspx)
void Page_Load(object sender, System.EventArgs e)
{
 if(Page.IsPostBack && File1.PostedFile != null)
 {
 SaveImage();
 }
}

void SaveImage()

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 1 of 9

http://www.dmxzone.com/go?5476

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

{
 System.IO.FileInfo F = new System.IO.FileInfo(File1.PostedFile.FileName);
 if(F.Extension.ToLower() == ".gif" || F.Extension.ToLower() == ".jpg")
 {
 File1.PostedFile.SaveAs(Request.PhysicalApplicationPath + "\\Images\\" + F.Name);

 MakeThumbNail(F, 150, 80);
 }
 else
 {
 //warn user only gif or jpg files are allowed
 }
}

void MakeThumbNail(System.IO.FileInfo F, double MaxWidth, double MaxHeight)
{
 System.Drawing.Image OriginalImg = ¬
System.Drawing.Image.FromStream(File1.PostedFile.InputStream);
 System.Drawing.Size TheSize = new System.Drawing.Size(OriginalImg.Width, ¬
OriginalImg.Height);

 double sizer = 1;

 while((MaxWidth > -1 && TheSize.Width > MaxWidth) || (MaxHeight > -1 && ¬
TheSize.Height > MaxHeight))
 {
 if(MaxWidth > -1 && TheSize.Width > MaxWidth)
 {
 sizer = MaxWidth / TheSize.Width;
 TheSize.Width = Convert.ToInt32(TheSize.Width * sizer);
 TheSize.Height = Convert.ToInt32(TheSize.Height * sizer);
 }
 if(MaxHeight > -1 And TheSize.Height > MaxHeight)
 {
 sizer = MaxHeight / TheSize.Height;
 TheSize.Width = Convert.ToInt32(TheSize.Width * sizer);
 TheSize.Height = Convert.ToInt32(TheSize.Height * sizer);
 }
 }

 string SavePath = Request.PhysicalApplicationPath + "\\Thumbs\\" + F.Name;

 System.Drawing.Bitmap NewImg = new System.Drawing.Bitmap(OriginalImg, TheSize);
 OriginalImg.Dispose();

 if(System.IO.File.Exists(SavePath)){System.IO.File.Delete(SavePath);}

 switch(F.Extension.ToLower())
 {
 case ".jpg":
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Jpeg);
 break;
 case ".gif":
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Gif);
 break;
 }

 NewImg.Dispose();

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 2 of 9

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

}

VB (UploadVB.aspx)
Sub Page_Load(Sender As Object, e As System.EventArgs)
 If Page.IsPostBack And Not File1.PostedFile Is Nothing Then
 SaveImage()
 End If
End Sub

Sub SaveImage()
 Dim F As New System.IO.FileInfo(File1.PostedFile.FileName)
 If F.Extension.ToLower() = ".gif" Or F.Extension.ToLower() = ".jpg" Then
 File1.PostedFile.SaveAs(Request.PhysicalApplicationPath & "\Images\" + F.Name)
 MakeThumbNail(F, 150, 80)
 Else
 'warn user only gif or jpg files are allowed
 End If
End Sub

Sub MakeThumbNail(F As System.IO.FileInfo, MaxWidth As Double, MaxHeight As Double)
 Dim OriginalImg As System.Drawing.Image = ¬
System.Drawing.Image.FromStream(File1.PostedFile.InputStream)
 Dim TheSize As new System.Drawing.Size(OriginalImg.Width, OriginalImg.Height)

 Dim sizer As Double = 1

 Do While (MaxWidth > -1 And TheSize.Width > MaxWidth) Or (MaxHeight > -1 And ¬
TheSize.Height > MaxHeight)
 If MaxWidth > -1 And TheSize.Width > MaxWidth Then
 sizer = MaxWidth / TheSize.Width
 TheSize.Width = Convert.ToInt32(TheSize.Width * sizer)
 TheSize.Height = Convert.ToInt32(TheSize.Height * sizer)
 End If
 If MaxHeight > -1 And TheSize.Height > MaxHeight Then
 sizer = MaxHeight / TheSize.Height
 TheSize.Width = Convert.ToInt32(TheSize.Width * sizer)
 TheSize.Height = Convert.ToInt32(TheSize.Height * sizer)
 End If
 Loop

 Dim SavePath As String = Request.PhysicalApplicationPath & "\Thumbs\" & F.Name

 Dim NewImg As New System.Drawing.Bitmap(OriginalImg, TheSize)
 OriginalImg.Dispose()

 If System.IO.File.Exists(SavePath) Then System.IO.File.Delete(SavePath)

 Select Case F.Extension.ToLower()
 Case ".jpg"
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Jpeg)
 Case ".gif"
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Gif)
 End Select

 NewImg.Dispose()

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 3 of 9

End Sub

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

Now we will break the code down into individual lines and explain the purpose of each one.

C#
void Page_Load(object sender, System.EventArgs e)

VB
Sub Page_Load(Sender As Object, e As System.EventArgs)
This line is the procedure body of the Page_Load method which runs every time the page loads, any code
placed within the Page_Load method is executed when the page loads.

C#
if(Page.IsPostBack && File1.PostedFile != null)

VB
If Page.IsPostBack And Not File1.PostedFile Is Nothing Then
This line is the first line within the Page_Load method, it checks two things, first it checks if the page
Page.IsPostBack equals true indicating that the page load was the result of the form being submitted,
secondly it checks that a file has been uploaded, if no file is uploaded the File1.PostedFile will equal
null(Nothing in VB)

C#
SaveImage();

VB
SaveImage()
If both the checks performed by the previous line return true indicating that a file has been uploaded this
line gets executed, this line simply calls the SaveImage method which we will look at next.

C#
void SaveImage()

VB
Sub SaveImage()
This line is the procedure body of the SaveImage method which contains the code used to save the
uploaded image file to the server's file system.

C#
System.IO.FileInfo F = new System.IO.FileInfo(File1.PostedFile.FileName);

VB
Dim F As New System.IO.FileInfo(File1.PostedFile.FileName)
This line creates a new instance of the FileInfo class called F; the path of the uploaded image
(File1.PostedFile.FileName) is passed as a parameter of the FileInfo class constructor. The FileInfo class is a
useful tool that can be used to extract the file name from the full path and also get the file extension without
us having to parse the information from the string directly.

For more information on the FileInfo class and other file system access tips see my tutorial Working with the
Server's file system using ASP.NET.

C#
if(F.Extension.ToLower() == ".gif" || F.Extension.ToLower() == ".jpg")

VB

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 4 of 9

http://www.dmxzone.com/go?5763
http://www.dmxzone.com/go?5763

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

If F.Extension.ToLower() = ".gif" Or F.Extension.ToLower() = ".jpg" Then
this line used the F FileInfo class to check if the uploaded files extension matches .gif or .jpg indicating that
the user has uploaded a *.gif or *.jpg file, we must perform this check to avoid errors that would arise if the
user was to upload a different type of file. This example is constrained to supporting *.gif and *.jpg image
types but you can add other types such as *.png if required, as long as the type is a supported image format
of the .NET Framework, the following are natively supported:

Extension Description
EMF Enhanced Windows metafile.
Exif Exchangeable Image Format.
GIF Graphics Interchange Format.
ico Windows icon.
JPEG Joint Photographic Experts Group.
PNG W3C Portable Network Graphics.
TIFF Tag Image File Format.
WMF Windows metafile.

C#
File1.PostedFile.SaveAs(Request.PhysicalApplicationPath + "\\Images\\" + F.Name);

VB
File1.PostedFile.SaveAs(Request.PhysicalApplicationPath & "\Images\" + F.Name)
This line saves the uploaded image to a directory called Images that should already exist in the site root - an
error will occur if the directory does not exist. The physical path to the root of the site is obtained with
Request.PhysicalApplicationPath and then the directory and image file name are appended to this value.
Your site must be defined an IIS Application for this to work correctly.

C#
MakeThumbNail(F, 150, 80);

VB
MakeThumbNail(F, 150, 80)
This line called the MakeThumbNail method which creates and saves the thumbnail; we will look at this
method shortly. Three parameters are passed with this call: the F FileInfo class, and the maximum width and
height that the thumbnail can be. if you wish to ensure the width is constrained to a maximum possible size
but are not concerned what size the height ends up at you can simply pass -1 as the third parameter and
the height will be resized proportionally with the height with no further checking performed. The same can
be done to ignore the width value and have the constraints applied to the height by passing -1 as the
second parameter. If -1 is passed for both dimensions the thumbnail will be the same size as the original
image.

C#
else
{
 //warn user only gif or jpg files are allowed
}

VB
Else
 'warn user only gif or jpg files are allowed
End If
these lines are used to optionally provide feedback to the user when they upload a non *.gif or *.jpg file, the
example code does not show feedback, as you may wish to Response.Write, set a Labels text or redirect to
a different page in this scenario.

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 5 of 9

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

C#
void MakeThumbNail(System.IO.FileInfo F, double MaxWidth, double MaxHeight)

VB
Sub MakeThumbNail(F As System.IO.FileInfo, MaxWidth As Double, MaxHeight As Double)
This line is the procedure body of the MakeThumbNail method, this method contains the code used to
generate and save the thumbnail file to the server's file system.

C#
System.Drawing.Image OriginalImg = ¬
System.Drawing.Image.FromStream(File1.PostedFile.InputStream);

VB
Dim OriginalImg As System.Drawing.Image = ¬
System.Drawing.Image.FromStream(File1.PostedFile.InputStream)
This line creates a new instance of the System.Drawing.Image class called OriginalImg; the binary image
data passed to the Image class constructor is the File1.PostedFile.InputStream which returns the binary date
representing the uploaded image which is still held in the server's memory.

C#
System.Drawing.Size TheSize = new System.Drawing.Size(OriginalImg.Width, ¬
OriginalImg.Height);

VB
Dim TheSize As new System.Drawing.Size(OriginalImg.Width, OriginalImg.Height)
This line creates a new instance of the System.Drawing.Size class called TheSize which is used to store width
and height values used for resizing image files, the width and height of the OriginalImg image are passed
into the class constructor as the starting size.

C#
double sizer = 1;

VB
Dim sizer As Double = 1
This line declares a variable called sizer which will be used during the resize procedure, the default value of
this variable is set to 1.

C#
while((MaxWidth > -1 && TheSize.Width > MaxWidth) || (MaxHeight > -1 && TheSize.Height
> MaxHeight))

VB
Do While (MaxWidth > -1 And TheSize.Width > MaxWidth) Or (MaxHeight > -1 And
TheSize.Height > MaxHeight)
this line begins a loop that will repeated while the width or height of the TheSize class is more than the
MaxWidth or MaxHeight values respectively, if -1 is passed for the MaxWidth or MaxHeight the associated
dimension is ignored.

C#
if(MaxWidth > -1 && TheSize.Width > MaxWidth)

VB
If MaxWidth > -1 And TheSize.Width > MaxWidth Then

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 6 of 9

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

This line checks to see if the MaxWidth value is more than -1, if it is the Width of the TheSize class is checked to
see if it's over the MaxWidth value.

C#
sizer = MaxWidth / TheSize.Width
TheSize.Width = Convert.ToInt32(TheSize.Width * sizer);
TheSize.Height = Convert.ToInt32(TheSize.Height * sizer);

VB
sizer = MaxWidth / TheSize.Width
TheSize.Width = Convert.ToInt32(TheSize.Width * sizer)
TheSize.Height = Convert.ToInt32(TheSize.Height * sizer)
if the Width of the TheSize class is over the MaxWidth value these lines are then executed. The first sets the
sizer variable to the result of the MaxWidth value divided by the Width of the TheSize class, the next line sets
the Width of the TheSize class to the result of multiplying the current Width of the TheSize class by the value of
the sizer variable. Finally the Height of the TheSize class is set to the result of multiplying the current Width of
the TheSize class by the value of the sizer variable converted to an Int32 value (a whole number). This
process brings the width down to the MaxWidth value and brings the height down proportionally.

C#
if(MaxHeight > -1 And TheSize.Height > MaxHeight)

VB
If MaxHeight > -1 And TheSize.Height > MaxHeight Then
Now that the width has been checked and sized if necessary, the MaxHeight is checked to see if it's more
than -1 and if it is the Height of the TheSize class is checked to ensure is not more than the MaxHeight value.

C#
sizer = MaxHeight / TheSize.Height;
TheSize.Width = Convert.ToInt32(TheSize.Width * sizer);
TheSize.Height = Convert.ToInt32(TheSize.Height * sizer);

VB
sizer = MaxHeight / TheSize.Height
TheSize.Width = Convert.ToInt32(TheSize.Width * sizer)
TheSize.Height = Convert.ToInt32(TheSize.Height * sizer)
If the height of the TheSize class is more than the MaxHeight value the sizer variable is set to the result of the
MaxHeight divided by the current height of the TheSize class. Next, the Width of the TheSize class is set to the
result of multiplying the Width of the TheSize class with the sizer variable converted to an Int32. Finally, the
Height of the TheSize class is set to the result of multiplying the Height of the TheSize class with the sizer
variable converted to an Int32. By resizing both dimensions each time, the proportions of the image will be
retained.

C#
string SavePath = Request.PhysicalApplicationPath + "\\Thumbs\\" + F.Name;

VB
Dim SavePath As String = Request.PhysicalApplicationPath & "\Thumbs\" & F.Name
This line sets a string variable called SavePath to the result of calling Request.PhysicalApplicationPath to get
the physical path to the site root and adding the directory name (Thumbs) and then the file name (F.Name)
onto the end. This will result in the full path to the location the thumbnail should be saved at.

C#

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 7 of 9

System.Drawing.Bitmap NewImg = new System.Drawing.Bitmap(OriginalImg, TheSize);

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

VB
Dim NewImg As New System.Drawing.Bitmap(OriginalImg, TheSize)
This line creates a new instance of the System.Drawing.Bitmap class called NewImg. The parameters passed
in the class constructor are the Image class OriginalImg that was created earlier, and the TheSize class we
just re-dimensioned.

C#
OriginalImg.Dispose();

BV
OriginalImg.Dispose()
This line purges the OriginalImg class from memory by calling its Dispose method as we have no further use
for it now.

C#
if(System.IO.File.Exists(SavePath)){System.IO.File.Delete(SavePath);}

BV
If System.IO.File.Exists(SavePath) Then System.IO.File.Delete(SavePath)
This line uses the Exists method of the System.IO.File class to check if the thumbnail image already exists. If it

 exists, it's deleted using the Delete method of the System.IO.File class. The reason for this is that when we later
save the new thumbnail, an error will result if the file already exists.

C#
switch(F.Extension.ToLower())

BV
Select Case F.Extension.ToLower()
This line begins a conditional switch/Select Case branch structure that contains one case element for each

 possible condition; here we are saying select the case element that matches the files extension converted to
lower case.

C#
case ".jpg":
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Jpeg);
 break;

BV
Case ".jpg"
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Jpeg)
These lines represent a case element which comprises of the case label, .jpg in this case (no pun intended),

ss

ends with
r

and the code to execute if this elements label matches the switch/select case condition. If this element
matches the condition the thumbnail is saved as a *.jpg format using the Save method of the NewImg cla
object, passing the path to save the file to and the format to encode the image file (in this case
System.Drawing.Imaging.ImageFormat.Jpeg) as parameters. The C# code for the case element
the break statement; this causes the code to pass over the rest of the case elements without executing thei
code, Visual Basic does not require this as it always jumps to the End Select after a case element has been
processed.

C#
case ".gif":
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Gif);
 break;

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 8 of 9

 ASP.NET: Uploading an Image and Creating a thumbnail
Kevin Marshall

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 9 of 9

VB
Case ".gif"
 NewImg.Save(SavePath, System.Drawing.Imaging.ImageFormat.Gif)
This is the case element for when the uploaded file is a *.gif file, in this case the thumbnail is saved as a *.gif
file. This means the user can upload a *.jpg or *.gif file and you know the thumbnail will always be the same
format as the uploaded image.

C#
NewImg.Dispose();

VB
NewImg.Dispose()
Now that the thumbnail has been saved, we no longer need the NewImg class object, so we call its Dispose

Summary
urse of this tutorial you learned how to upload files using an HTML form, you also learned how to

method to reclaim the memory is using.

During the co
save the uploaded file to the servers file system, next you learned how to load an image into memory and
resize it based on pre determined maximums, finally you learned how to save the new image to the server's
file system.

	ASP.NET: Uploading an Image and creating a thumbnail
	
	The HTML portion of the page
	The Server Side Code
	Summary

